
DOCONEBT MOSE

20 174 466 SE 028 538

AUTHOR Weissman, Kenneth
TITLE School BASIC.
INSTITUTICN Dartmouth Coll., Hanover, N.H. Kiewit Computation

Center.
SPONS AGENCY National Science Foundation, Washington, D.C.
POE DATE Feb 70
GRANT NSF-Gil-2246
NOTE 87p.; For related documents, see SE 028 535-537; Not

available in hard copy due to copyright restrictions;
Contains occasional light and broken type

EDRS PRICE
DESCRIPTCRS

MF01 Plus Postage. PC Not Available from EDRS.
*Computer Oriented Programs; *Computer Programs;
*Computers; Curriculum; Instruction; *Learning
Activities; *Mathematics Education; Problem Sets;
*Programing; Seccndary Education

ABSTRACT
This booklet was designed for the use of junicr high

school or high school students. Detailed, step-by-step instructions
are giver for using the computer,. for writing programs in BASIC, and
for using the various commands in the BASIC language. A list of 75
computer programing ideas in varying degrees of difficulty is
presented in the index. (MP)

* Reproductions supplied by EDRS are the hest that can be made *

* from the original document. *

U S DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAI NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

"PERMISSION TO REPRODUCE THIS
MATERIAL IN MICROFICHE ONLY
HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

School BASIC

by

Kenneth Weissman
Benjamin Franklin High School

SECONDARY SCHOOL PUBLICATION

KIEWIT COMPUTATION CENTER
DARTMOUTH COLLEGE
HANOVER, NEW HAMPSHIRE 03755

(Supported in part by National
Science Foundation Grant No.
GW-2246)

February, 2970

D Copyright 1969 by TrNstees of Dartmouth College

3

TABLE OF CONTENTS

FOREWORD TO TEACHERS
PREFACE

0

00

CHAPTER ONE
User number, Turning on the Teletype, NEW, Now you're ready to write
a program in BASIC, Line Numbers, Making Corrections, END, Print-Cal-
culations, Parentheses, PRINT-Numbers, OLD, Changing the Program you
are working on, S Key (STOP), RUN, LIST, SAVE, UNSAVE, REPLACE, HELLO,
BYE or GOODBYE.

CHAPTER TWO Z7
More on PRINT, Line Jumping Using PRINT, What is a Variable?, Some
Additional Variables, the LET statement uses Variables (or letters),
Strings ($), Asking Questions (Input statement), STOP, GO TO.

CHAPTER THREE .
28

Exponents, Signs (+ and -), Fractions and Scientific Notation, FOR..,
NEXT Loop, FOR...NEXT Loop and STEP, More on FOR...NEXT, Preparing
a Table of Values, The Line and TAB, The line and Comma.

CHAPTER FOUR 4Z
Inequalities, IF... THEN, ON... GO TO, GOSUB an,: RETURN, READ and DATA,
"READ and DATA, RESTORE"

CHAPTER FIVE 49
J=J+l; etc, More on J=J+l, RADIAN MEASURE, ANGLES and PI, SINE, COSINE
and TANGENT, REMARK also APOSTROPHE (1); Functions, FUNCTIONS, Use of,
Rounding off (Decimal Places); DEF 3 ROOTS; Cube Root Definition; LIST,
SYS; CAT; RENAME; SCRATCH; (RETURN KEY); OLD DARTCAT***; (CONTROL,
SHIFT and P); TTY; CATALOG.

CHAPTER SIX 67
Passwords, Debugging, EDIT, Matrix and Determinants, Files, Error
Messages, Flags, RND and RANDOMIZE.

APPENDIX A, Some Suggestions for Student Programs 75

INDEX 80

FOREWARD TO TEACHERS

This booklet was designed for the use of Junior High
School and High. School students. A student who shows an
interest in computers or has completed more than a semester
of High School Algebra should be given the opportunity to
use the regular BASIC Manual (latest edition).

While a limited number of exercises and program examples
are given in this booklet, sets of TOPIC OUTLINES are avail-
able from:

NSF SECONDARY SCHOOL PROJECT
Kiewit Computation Center
Dartmouth College
Hanover, New Hampshire 03755

NOT ALL OF THE BASIC LANGUAGE IS EXPLAINED IN THIS BOOKLET.

Explanations of BASIC and other mathematical concepts
contained herein have been adjusted to meet the needs and under-
standing of the "average" teenager.

A table of contents and index is provided for easier
reference.

The specific individual ability, imagination, and creativity
of the student determines to a large extent the meaningful and
productive use of a time-sharing teletype in school. A high degree
of teacher interest also leads to motivated students.

Ken Weissman

- 0

Preface

"A program is a set of directions that is used to tell a

a computer how to provide an answer to some problem."

This booklet will explain many of these directions, so

that you will be able to operate the computer. The directions

are called a language.

The language that this booklet explains is called BASIC.

It is a lot of fun to learn. However, not everything about the

BASIC language is explained in this booklet. When you finish

the booklet you might like to learn more. If you do, then ask

your teacher for more information.

The computer you are using is a GE-635 located in the

Kiewit Computation Center at Dartmouth College, Hanover,

New Hampshire. You will be able to operate the Dartmouth

Time-Sharing System (DTSS) computer from a teletype terminal

at your school that uses regular telephone lines for com-

munication.

00

CHAPTER ONE

USER NUMBER

Everybody needs a user number.

Get your user number from your teacher, or the person

in charge. Write it below so you won't forget.

My user number:

1

TURNING ON THE TELETYPE

Directions are posted near most teletypes telling how to
operate them.

There ar r. several different models of teletype machines.

Usually you just push the originate button, marked ORIG.
Some teletypes are marked LINE 1 or LINE 2, instead of ORIG.
In a few seconds, you will hear a beep, and you are ready to
start.

On some hook-ups, you may hear a dial-tone after pushing the
ORIG button. If this happens, then dial anyone of these special
phone numbers (don't pick up the phone):

7 6511 2091 2101

Then in a few seconds, you will hear a beep, and you are
ready to start.

If you have any trouble, please let your teacher know about
it, so that you can be helped.

NEW

After turning on the teletype, hearing the beep, and
giving your user number, the computer will ask NEW OR OLD--.

If you are starting a NEW program, type NEW, and push
the return key on the teletype.

(You must push the return key every time you have finished
typing a line.)

The computer will then ask for the NEW FILE NAME--.

Make up a name. (You can name your program with any
word up to 8 letters.)

Given below are some sample program names.

JOE FAT-2 X JACK BASEBALL

3

NOW YOU'RE READY TO WRITE A PROGRAM IN BASIC

The computer isn't very smart. You have to tell it every-
thing it has to do, in a specific order.

The line numbers tell the computer in which order to do the
program, usually lowest number first. Line numbers also make it
easy for us to locate parts of the program so that we can make
changes.

If you didn't already know that the computer could:

Add (+)

Multiply (*)
Divide (/)
Subtract (-) then you have just been

informed.

Let's write a program that will multiply 15 by 3.

O.K.!! Here goes the program!

DARTMOUTH TIME-SHARING
TERMINAL 124 ON AT 10:49 12 AUG 69, 058 USERS Heading typed by
DTSS TILL 2400. LIST CCNEWS*** 6 AUG 69 teletype.

USER NUMBER--(Type your user number)
NEW OR OLD--NEW TIMES
READY

(remember to push the return key at
the end of every line)

10 PRINT 15*3
20 END
RUN

TIMES 08/12/69 10:50

45

TIME: 0.038 SEC.
READY

That's all there is to it! After a second or so, the teletype
will print your answer....45.

With this little bit of information, you can probably do most
of the arithmetic you will ever need!

It's a simple job to change line 10 to either add (+),
subtract (-), or divide (/). It is just as easy to change the
numbers you want to work with.

4

NOW YOU'RE READY TO WRITE A PROGRAM IN BASIC (Continued)

Here is another program that adds three numbers 8,3, and 7:

NEW ADD
READY

10 PRINT 8+3+7
20 END
RUN

ADD 08/12/69 10:51

18

TIME: 0.040 SEC.
READY

(remember you must push the return key at
the end of each line.)

- 5 --

LINE NUMBERS

All programs have line numbers.

The line number identifies the line and tells the computer
which lines to do in order. (Usually, lowest number first.)

We try to leave space between line numbers, so that we can
place other lines between. (10,20,30 instead of 11,12,13, etc.)

A set of line numbers is shown below:

10
20
30
35
59
80
etc.

you can choose any set of line numbers you want.

When you have finished typing a line, you must push the
return key on the teletype keyboard.

Line numbers mLy be typed in any order.

8

32 the computer will sort them from
15 highest
19

lowest to
8

15
19
32

You may eliminate any line simply by retyping the line number
with nothing after it. (This is useful when making corrections.)

You may choose any set of line numbers you wish. Most
people pick line numbers in the ten times table. (10,20,30,40,etc.)

6

MAKING CORRECTIONS

There are 5 major ways to make corrections when you are
working on the teletype that is hooked into the DTSS (Dartmouth
Time-Sharing System):

1. To eliminate the line you are working on, you can just
retype the line number and start all over again.

2. To delete the line that you are working on, push the
control key and the X key at the same time.

3. To delete one or two, or just a few letters, push
the shift keyand the 0 key at the same time. This produces
a backwords arrow -.. for each letter eliminated. An example
is shown below:

SATRUDAYURDAY

The computer will continue as if RUDAY was never typed.

4. You can type NEW at any time and eliminate or erase your
entire current program.

5. You can type IGNORE at any time and everything since
your last command will be ignored. Some commands are: RUN,
LIST, SAVE, UNSAVE, REPLACE, NEW, OLD.

END

The last line of a program must contain the END staternent.
It looks like this:

999 END

Only one END is allowed in a program.

(The computer isn't too smart, and you have to tell it
where the end of the program is.)

PRINT - Calculations

Calculations involving addition (+), subtraction (-),
multiplication (*), or division (/) can be done with a PRINT
statement.

Other calculations which will be explained later can also be
done using the PRINT statement in the same manner. The names of
some of these are:

Exponents (I.), Square root SQR(x), Sine SIN(x), Cosine COS(x),
Tangent TAN(x), absolute value ABS(x), exponents to base e EXP(x),
and complicated formulas that you can make up.

In the example below, the number 10 is divided by 2.

NEW JOE
READY

(remember you must always push the return key at the
end of every line.)

15 PRINT 1.,/2
20 END
RUN

JOE 08/12/69 10:53

5

TIME: 0.039 SEC.
READY

The program will print the answer...5 after the RUN command
is typed. The calculation of 10/2 is done by the computer.

Can you write a program that adds two numbers together?

Can you write a program that multiplies three numbers together?

PARENTHESES

The computer isn't able to determine what you really wanted
to do if you make a mistake. It can only do TI,hat you tell it to
do.

Suppose you wanted to find the average of two test grades
70 and 90. If you wrote this program like someone I know did,
you would get the wrong answer.

WRONG

NEW AVERAGEW
READY

10 PRINT 70+90/2
20 END
RUN

AVERAGEW 08/12/69 10:54

115

TIME: 0.041 SEC.
READY

The computer printed out 115 and we know this is wrong.

What we really wanted to do was to add 70+90 first, and
then divide by 2. This can be done by using parentheses.

CORRECT

NEW AVERAGEC
READY

10 PRINT (70+90)/2
20 END
RUN

AVERAGEC 08/12/69 10:54

80

TIME: 0.041 SEC.
READY

The computer will print out 80, the correct answer.

What happened here was that the computer first added 70+90
and got 160, then divided the 160 by 2 to get 80.

The computer is scheduled to do multiplication and division
before addition and suhttaction and then to proceed from left to right

10 -

16'

PARENTHESES (Continued)

in calculating answers.

Suppose we wanted to add 2+2 and then multiply the result by 3.
If we simply wrote: 2+2*3 or 3*2+2, we would get the same wrong
answer in both cases:

NEW TRY1
READY

10 PRINT 2+2*3
20 END
RUN

or

TRY1 08/12/69 10:55

8

TIME: 0.041 SEC.
READY

NEW TRY2
READY

10 PRINT 3*2+2
20 END
RUN

TRY2 08/12/69 10:55

8

TIME: 0.041 SEC.
READY

Of course, this isn't what we wanted to do. To correct this,
we use parentheses:

NEW TRY
READY

10 PRINT (2+2) *3
20 END
RUN

TRY 08/12/69 10:56

12

TIME: 0.039 SEC.
READY

A good rule to follow is that if you aren't sure what the
computer will do, group your calculations with parentheses the way
you want the problem solved.

A more complicated problem is shown below:

Suppose you wanted to add 3+5 and 2+7, then take both of
these answers and multiply them together, after doing that you
want to divide by the number 4. What expression would do that?

PARENTHESES (Continued)

NEW PARENTHE
READY

10 PRINT ((3+5)*(2+7))/4
20 END
RUN

PARENTHE 08/12/69 10:57

18

TIME: 0.040 SEC.
READY

The answer that the computer will calculate is....18.

PRINT - Numbers

Suppose you just want to print a number. The PRINT
statement can be use0 for this purpose.

NEW NUMBER
READY

10 PRINT8
20 END
RUN

NUMBER 08/12/69 10:58

8

TIME:
READY

0.039 SEC.

The program will print the number 8 after you type the
word RUN.

Write a program that will print the number 143.

NEW NUMBER1
READY

10 PRINT 143
20 END
RUN

NUMBER1 08/12/69 10:58

143

TIME:
READY

0.040 SEC.

OLD

When the computer asks NEW OR OLD and you are calling-up a
program that you have already worked on and saved, type the word
OLD, and push the return key.

The computer will then ask for the OLD FILE NAME--.

Type the old program name exactly as you did the first
time you used it.

Some OLD programs that have already been worked on and
saved are given below (try them):

BANDIT*** BINGO*** (***indicates placed in
the computer library)

CHANGING THE PROGRAM YOU ARE WORKING ON

At any time you may type NEW or OLD. This will allow you
to start a new program or call-up an old program from a computer
library called catalog.

Once you have a little experience, you can take a shortcut
and call a program directly.

Two examples of this are shown below:

OLD BANDIT*** (return key)

The computer will answer READY

NEW JOE (return key)

The computer will answer READY.

S KEY (STOP)

or

At any time, even when the teletype is printing, you may
stop the program simply by pushing the letter S key on the key-
board, or typing the word STOP.

Certain other commands you will find useful are given below:

'RUN Command'

When you type RUN, your program will do the job (be executed),
if properly written.

If not written correctly, the computer will tell you some
of the errors, and where to look for them.

'LIST Command'

When you type LIST, your program (as written and corrected)
will be listed on the teletype.

'SAVE Command'

If_you_wishto_SAVE_your_program_for_s.ome_later_timet_type
the word SAVE. The program is placed in an area in the
computer called storage, or library, or catalog.

'UNSAVE Command'

If you wish to remove your program from storage (library or
catalog) and UNSAVE it, type the word UNSAVE. This is almost
the same as DESTRUCT in the TV program "Mission Impossible."

'REPLACE Command'

If you have already saved a program and wish to correct or
modify it, type the word REPLACE or REP after making the
latest correction.

'HELLO Command'

By typing HELLO or HEL you can change the user number without
turning off (disconnecting) the telephone line.

'BYE or GOODBYE Command'

When typing BYE or GOODBYE, this is a signal to the computer that
you wish to discontinue your work. The computer will then dis-
connect the teletype and erase everything you have done. You
can avoid erasure by typing SAVE OR REP before typing BYE.

- 16 -

Now that you are an Official BASIC Programmer, Level One,
you are ready to start on Level Two.

If you tried either:

OLD BANDIT*** or

OLD BINGO*** described earlier, you realize
that there is more to programming than just adding or multiplying
numbers together.

First, these programs used words and whole sentences, while
you have used only numbers.

Second, these programs skipped or jumped lines and asked you
questions.

This chapter will explain how some of this was done, so you
can do it too.

-17-

2,e)

MORE ON PRINT

A message to be printed must have quotes (" ") around it.
Also, everything inside the quote symbols will be printed as
typed.

A program to print the message SNOOPY SLEEPS is given below:

NEW SLEEPS
READY

30 PRINT "SNOOPY SLEEPS"
40 END
RUN

SLEEPS 08/12/69 10:59

SNOOPY SLEEPS

TIME: 0.040 SEC.
READY

Notice the quote symbols
before and after the message

Write a program that will print your name.

Write a program that will print the name of your school.

You can have more than one PRINT statement in a program.

Shown below are two programs that print a message about
Snoopy. The first program has a semi-colon, the second program
doesn't.

The semi-colon (;) at the end of line 32 causes the next line
to print right after it. Try the program both ways, with and with-
out the semi-colon (;).

NEW SNOOP-1 NEW SNOOP-2
READY READY

32 PRINT "SNOOPY SLEEPS"; 32 PRINT "SNOOPY SLEEPS"
34 PRINT "UNDER THE TREE." 34 PRINT "UNDER THE TREE."
39 END 39 END
RUN RUN

SNOOP-1 08/12/69 11:02 SNOOP-2 08/12/69 11:03

SNOOPY SLEEPS UNDER THE TREE. SNOOPY SLEEPS
UNDER THE TREE.

TIME: 0.049 SEC. TIME: 0.049 SEC.
READY READY

-18-

2 4

MORE ON PRINT (Continued)

It is very important to realize that the semi-colon(;) causes
information to be squeezed or placed on the same line.

The comma (,) not shown on the preceding page places information
fifteen spaces apart in 5 columns. The comma will be explained in
greater detail later.

- 19

LINE JUMPING USING PRINT

We just learned that the PRINT statement permits the computer,
by means of the teletype, to print or write a message.

We can use the PRINT statement in other ways.

The PRINT statement with nothing after it (without a message)
is an order to make the paper on the teletype move-up one line.

An example of this program is given below:

20 PRINT
30 END

Paper moves up one line
on the command RUN.

Can you write a program to jump the paper five lines?

Don't look at the answer!!! Try it first.

Most probably you chose the following program or something
like it to make the paper jump five lines:

NEW JUMP-1
READY

21 PRINT
22 PRINT
23 PRINT
24 PRINT
25 PRINT
30 END

However, an easier method is available using the line-feed key.

Here it is:

21 PRINT "

30 END

Notice the line-feed key was used
between the quote symbols.

Try it.

- 20

WHAT IS A VARIABLE?

A variable in the BASIC language is any one of the 26 letters
of the alphabet.

Each letter (or variable) may be given a different number value
at various points in our program.

However, We try to avoid using the letter '0' (oh), because
we can easily mix this letter up with the number zero.

Some examples of variables are given below:

ABCRSTWXYZ
Can you name any three other variables not already shown?

- 21 -

SOME ADDITIONAL VARIABLES

If we use up all of the letters in the alphabet, the BASIC
language has additional variables we can use.

Every letter followed by a number from 0 to 9 is also
considered a variable. This combination of letter and number
is treated just as if it were a single letter.

Some examples are given below:

Al A6 H9 17 Z5 Bl K3 L8

Is K25 a variable? NO, because the letter is
followed by a 2 digit number.

Is N6 a variable? YES.

Is 03 a variable? YES, but we try to avoid using
the letter '0' (oh), because
we easily mix it up with the
number zero.

THE LET STATEMENT USES VARIABLES (or letters)

So far, we have not assigned any number value to a letter.

The LET statement permits you to assign a value (some number)
to a letter (variable).

A program using the LET statement is shown below:

NEW LET1
READY

10 LET X=5
20 PRINT X
30 END
RUN

LET1 08/12/69 11:08

5

TIME: 0.041 SEC.
READY

' X IS ASSIGNED THE VALUE OF 5.
' THE 5 IS PRINTED.
' THE PROGRAM STOPS.

We didn't put a quote (" ") around X because we want the value of the
variable X printed, not the letter X. Another way of saying this
is: we want the number value assigned to X printed; in this case
it was 5.

Here is another program:

NEW LET2
READY

10 LET X=5
20 PRINT "X="X
30 END
RUN

LET2 08/12/69 11:09

X= 5

TIME: 0.045 SEC.
READY

' X IS ASSIGNED THE VALUE 5.
' THE 5 IS PRINTED, SO IS X=.
' THE PROGRAM STOPS.

Here the program will print out: X=5

- 23

.9

THE LET STATEMENT USES VARIABLES (or letters) (Continued)

Another program using the LET statement End a different
variable is shown below:

NEW LET3
READY

10 LET R3=5
20 PRINT R3
30 END
RUN

LET3 08/12/69 11:10

5

TIME: 0.044 SEC.
READY

' R3 IS ASSIGNED THE VALUE 5.
' THE 5 IS PRINTED.
' THE PROGRAM STOPS.

Given below is a more complicated program that multiplies
TWO letters (variables) together:

NEW LET4
READY

NEW LET4
READY

10 LET A=15
20 LET B=3
30 LET C=A*B
40 PRINT C
50 END
RUN

LET4 08/12/69 11:11

45

TIME: 0.042 SEC.
READY

or NEW LETS
READY

10 LET A=15
20 LET B=3
30 PRINT A*B
40 END
RUN

LETS 08/12/69 11:12

45

TIME: 0.044 SEC.
READY

The answer 45 is printed by the teletype.

- 24

STRINGS ($)

pt rial;ile lz, to an entire word orWe can +. a
0' l' V" 'rig a d '1-1sentence, j1,1 putting oi, Sign ($) after the letter.

4.a

an. ... of a
This 15 %001P.1' stting:

NEW STRING
READY

r103,p, u

10 LET As--"5.0 51)EF);,E 9

20 LET Bar.'"Us 'N 'v0 Tr'
30 PRINT 10.Y r th semi_colon keeps the
40 END '.(-- \ ----

lilleMile
e on the e line. Close-up1115sag iv same...,

the line.RUN Q,k.
tightly

packed on

STRING 08/1 11:13

4(.1Nit

SNOOPY SL5EP,
TREE.

TIME: 0 054
5Ec.

READY

print:The tel* N

SNOOPY OljkAtiNCIETI THE TRP1,

d!We
olant space

9.0of -A

e

after SLEEPS, so the lines
carn te) t
Letts f''g yt 09 Just type

1 Pe
10 0

-crectlY.

10 LET Pi$,-.."510 1 SLEEPS
RUN

STRING 08/116 11:13

THE TREE.
SNOOPY SXEPO t3INF 5141-'

Z
TIME: 0,052

S

READY

Now the
te4 printed;

SNOOPY .-N uNID101 THE TR

I'm eler-6 Y°u want
to try out strings for a little

we 0 the
while before on Paz being a Computer Programmer
Level Twr,,

Tr priv oU
name us perhaps write a wholey

parcjr.
itlg string, or pe

2s

31

ASKING QUESTIONS (INPUT STATEMENT)

We can make a program ask a question, perhaps even ask your
name and age. Below is a sample program that does just this:

NEW RED
10 PRINT "HI, MY NAME IS GE-635"
20 PRINT "WHAT IS YOUR NAME";
30 INPUT A$
40 PRINT "HOW OLD ARE YOU"
50 INPUT A
60 END
RUN

The computer will print:

HI, MY NAME IS GE-635
WHAT IS YOUR NAME? and stop.

Notice the semi-colon causes the question mark (?) to be
placed right after WHAT IS YOUR NAME. But, no question mark was
in the program!!! Where did the question mark come from?

The INPUT statement causes a question mark (?) to be printed.

Notice we used a variable A$, because we expect to receive a
word message (or string) back after the computer stops. The computer
stops after the ? is printed on the teletype paper.

You answer: (Your own name or RED BARON, or whatever)

RED BARON (return key)
HOW OLD ARE YOU

and stop.

Notice the semi-colon is missing on line 40, so the INPUT
question mark (?) appears on the next line, and the teletype stops.
Also, the variable this time was A, because we expect a number and
not a word message.

You answer: (Your age, or 99, or some number) and (return key)

Can you write a program using INPUT statements?

- 26 -

3,2

Given below are two more useful statements that we will use shortly.

STOP

The STOP statement acts like the END statement, by ending or
stopping the program.

STOP statements can be located anywhere, except the last line.

Examples of a STOP statement look like this:

10
20
30
37 STOP
40
45
90
110 END

GO TO

The program has 2 STOP statements.

The END statement is always the last line.

The GO TO statement permits the computer to jump around in
a program and not follow the order of line numbers from lowest
to highest.

An example of this is given below:

30 GOTO 47 When the computer reaches line 30, it is told to
41 STOP go to line 47, jumping over the STOP on line 41.

47
53 GO TO 30 At line 53, it is told to go back to line 30,
99 END starting the process all over again.

This is called loop.

Will this program ever end?

How can you break (get out of) the loop?

27

3.?

%be. 1 1.1 1. .1. 11 41../

CONGRATULATIONS!!!!!!!!!!!!!!!!

You are now an Official BASIC Programmer, Level Two. Of
course, to be a Level Three Programmer requires more work on
your part, and a lot more math.

This chapter deals with something called exponents, which
is nothing more than a shorthand way of multiplying the same
number together.

Also, this chapter works with fractions and explains what
happens to them.

I'm certain that you would want to know more about loops
which make things easier to program, and how to display you
answers in a neater fashion.

EXPONENTS

Inarithmetjvc, we have a sorthand way of saying 4 times 4.
It is written 44. The little is called an exponent. Of course,
the answer is 16.

Also,

7X7 is 7
2 or 49

8X8 is 8
2 or 64

10X10X10 is 10
3 or 1000

2X2X2X2X2 is 2
5 or 32

What is 3 2
? 5

2
? 4

3
?

In the BASIC language, we use the upward arrow (4) to denote
the exponent.

Suppose we wanted to find the area of a square whose side was
6, we could then write a program to do this:

NEW SQUARE
READY

10 PRINT 6+2
20 END
RUN

SQUARE 08/12/69 11:16

36

TIME: 0.040 SEC.
READY

Since the area of a square is its length times width, and in
this case both were six, we.could have written 10 PRINT 6*6 and have
gotten the same answer.

- 29 -

SIGNS (+ and -)

Before every number in the BASIC language is a space for the

sign. If it's positive, the sign is NOT printed and the space is

left blank or empty. However, if it is negative or minus (-),

the sign is put in by the computer.

All numbers must be either positive (+) or negative (-) in

BASIC. Zero, of course, doesn't have a sign, but it does have the

space.

FRACTIONS AND SCIENTIFIC NOTATION

Fractions

The computer understands the symbol (/) meaning division, as

a fraction. However, all answers to problems are given as either:

(a) Integers

(b) Decimals

(c) Exponent

0,1,2,3,-5,etc.

0.1, .325, -.4,etc. or as an

1.4E+9 (meaning 1400000000) or
1.2E-3 (meaning .0012)

Scientific Notation

Numbers larger than 8 digits are converted into the E notation,
as well as decimals smaller than one-tenth (0.1). Some examples of
this are given below:

(a) The number 45,176,325,416 has 11 digits. The computer
will then change the number to: 4.51763E+10

(b) The number 39,165,216 will be printed as: 39165216

(c) The number 0.34561273215 will be printed as: 3.45612E-1

5rom the above, it can easily be sown that E+2 means 'times 100'
or 10 and E+3 Teans 'times 1000' or 10 . E-2 means 'divide by 100'
or divide by 10 .

This topic is usually called SCIENTIFIC NOTATION and additional
questions about it should be asked of your teacher. It was presented
here so that in the event you did get a number with E, you would
be somewhat familiar with this strange type of answer and could
find out more about it at that time.

FOR...NEXT LOOP

Loops make counting easier, as well as sc me other types of
problems.

Suppose we wanted to print a series of numbers 1,2,3,4,5, etc.
to 100. (Usually, this is written as 1,2,3,.. 100).

We could type out each number after a print statement something
like this:

5 PRINT 1
10 PRINT 2
15 PRINT 3
etc.

This is very time consuming, but it would work:

There is a shorter way of doing this using a loop. In this
case, the loop is called a FOR...NEXT loop because we use the words
FOR and NEXT.

For every FOR there must be a NEXT in the program.

Here's how to use the FOR...NEXT statements:

Choose any letter (a dummy variable). I like the letter J.
You can choose any letter you want.

NEW LOOP
READY

10 FOR J=1 TO 100
20 PRINT J;
30 NEXT J
40 END
RUN

LOOP 08/12/69 11:17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
93 94 95 96 97 98 99 100

TIME: 0.257 SEC.
READY

I put the semi-colom (;) after J in line 20 because I wanted
the numbers close-packed. A comma (,) would put 5 numbers on a line.
Nothing after J would put the numbers underneath each other.

- 32 -

FOR... NEXT LOOP (Continued)

What happens here is that the J takes the value of 1, is
priwed Lin 20, and sent back to line 10. The word NEXT acts
like 'COTO line 10'.

fk:,wever, we already used 1, so it takes the next number 2,
ptint'i 72 and is sent hack to line 10 by the NEXT. This continues,
round and round (loop), until all the J's are used up.

When 111 J's are used up, and we come to the NEXT, there
is no NEXT J s.,) the program goes onto line 40 which in this case
is Lhe end.

SIJ:,p; wanted to write a program that would print out all
of the ,qi.ole numi)ers between 8 and 17. It's a simple matter using
a FOR...EXT loop to do this!

NEW LOOP-1
READY

10 J=8 Tc)
20 PRLNT J,
30 NEXT J
40 if.ND

RUN

1,00P-1 V/1.2/69 II:l9

9 10 11 12
1-1 14 15 16 17

TIME: 0.090 SEC.
READY

In rh;f:' cae, the numbers will be printed 5 to a line, 15 spaces
apart 1-7._.,.7e , comma (,) after J on line 20 was used.

Show. Leiow are 61 number of other examples that can be done simply
by c.typirlg line 10.

(a) In FOR J-0 TO 4
(b) in FO Z J=-5 TO 5
ic) 1) FOR J=-10 TO ,)

(d) 10 FOR J=-100 TO 0
(e) 10 FOR J.100 TO 0 sT:;:

- 33

3)

FOR...NEXT LOOP AND STEP

By retyping (e) in program LOOP''
Ting we

LIST

LOOP-1 08/12/69 11:21

10 FOR J=100 TO 0 STEP -1
20 PRINT J,
30 NEXT J
40 END

is20 A to closelyREADY (Line Ae
pack the numbers)

20 PRINT J;
RUN

LOOP-1 08/12/69 11:22

100 99 98 97
82
64
46
28
10

81 80 79
63 62 61
45 44 43
27 26 25
9 8 7 6

TIME: 0.259 SEC.
READY

96
78
60
42
24
5

95
77
59
41
23

4 3

94
76
58
40
22
2

93
75
57
39
21
1

7.:1

5c

3a
20

0

9;
45

5/

19

7.9)0

5"4

18

,F,39

..L.

32

4-7

88
70
52
34
16

87
69
51
33
15

86
68
50
32
14

85
67
49
31
13

84
66

48
30
12

8
65

47
29
11

The last example uses STEP
/
1&,A4116

e the computer counts in a
positive direction on the number

and we wanted to count backwards/ e ,tructed the
'I program to do

this with STEP -1.

34

0

FOR...NEXT LOOP AND STEP (Continued)

We could write a number of things such as times tables and,
odd and even numbers using STEP.

Below is a program that writes the 5 times table:

NEW FIVEX
READY

10 FOR X=5 TO 100 STEP 5
20 PRINT X;
30 NEXT X
40 END
RUN

FIVEX 08/12/69 11:24

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
95 100

TIME: 0.085 SEC.
READY

Retyping line 20 with a comma (,) after X spreads the numbers
into five columns.

20 PRINT X,
RUN

FIVEX 08/12/69 11:24

5 10 15 20 2
30 35 40 45 5
55 60 65 70 7
80 85 90 95 1

TIME: 0.141 SEC.
READY

Write a program that prints the (a) 3 times table, (b) odd numbers,
and (c) even numbers.

STEPs may be variables, decimals, fractions, integers, complicated
formulas and negative or positive numbers.

35 -

11

MORE ON FOR...NEXT

Of course, we could have more than one FOR...NEXT loop in a
program, but they cannot cross each other.

INCORRECT CORRECT

FOR J J
FOR R r,FOR R
NEXT J L--NEXT R
NEXT R J---,NEXT

We could have many FOR...NEXT loops, these being nested
inside each other:

CORRECT

--FOR J
FOR K

r--FOR R
I---NEXT R

L FOR T
NEXT T
NEXT K
NEXT J

PREPARING A TABLE OF VALUES

Often it is necessary to prepare a table of values, so that
you can see the relationship between variables in an equation. In
the case below, the table of values can be used to graph the line
y=3X+5.

NEW TABLE
READY

10 PRINT "TABLE OF VALUES FOR ";

20 PRINT "Y=3X+5"
30 PRINT
40 PRINT "X","Y"
50 PRINT
60 FOR X=-10 TO 10
70 LET Y=(3*X)+5
80 PRINT X,Y
90 NEXT X
100 END
RUN

TABLE 08/12/69 11:30

TABLE OF VALUES FOR Y=3X+5

X

-10 -25
-9 -22
-8 -19
-7 -16
-6 -13
-5 -10
-4 -7
-3 -4
-2 -1
-1 2

0 5

1 8

2 11
3 14
4 17
5 20
6 23
7 26

8 29
9 32
10 35

TIME: 0.243 SEC.
READY

37

d

PREPARING A TABLE OF VALUES (Continued)

Write a program to print a table of values from -5 to 5 of Y=4X-2.

Write a program to print a table of values from -5 to 5 of
2Xm=-- + 4.
3

HINT: LET Y= (((2 *X)/3) +4)

THE LINE and

0 °IAEach teletype ,actly 75 ,aces numbered from
0 - 74. the TABulator

sr
information to be

printed at all7
Pe locati_ line. e

\11, on a
number (7) t pri:

LeDscim

i
IOW:

13thSuppoye
P""1 ht ogram seven d ° be

space on the , A 1)%. tht wil ° this si

NEW TAB
READY

ins
10 PRINT TpB(' '''

7
0

20 END

TAB 08/12/69
11,

s3

I

0.04k SECTIME-:
READY

ra/11 the _inter to
space

13 (rememberThis prcW s
a the l="-' a, ete 1-p- prints out 7.0 is the firs 0e,,TtlI5 (4.) 01,s

M
(-)

Since we layedAbek, 110 r - In sign or-; and Pspace was taken
before the nuiv .

NEW TAB1
READY

10 PRINT T.AB(1'
2)

.)
20 END
RUN

TAB1 08/12/69 33

7

AEC
TIME: 0.045
READY

rint the spaceThis prog+) e
quotes

InPeohe re removed
4.4 since space 13 has

an invisible (
We froM around 7.

,n1d have TABSYou, of vp
41anY a line, each separated

by a semi-colO .):

THE LINE AND TAB (Continued)

Instead of TAB, we might find it useful to use a comma (,)
after a PRINT. The comma brings the line pointer to the next 15th
space from where it is. Commas cause the line pointer to skip
across from 0 - 14, 15 - 29, 30 to 44, 45 to 59, and 60 to 74.
The pointer points to either 0, 15, 30, 45, or 60 and returns to
0 on the next line.

THE LINE and COMMA

The program shown below causes the number "7" to print at the
space numbered 44. (This, of course, is the 45th space on the line
0 - 74.)

NEW COMMA
READY

10 PRINT ,,, "7"
20 END
RUN

COMMA 08/12/69 11:33

7

TIME: 0,056 SEC.
READY

CHAPTER FOUR

You're really getting up there!!

Now that you have become a Level Three BASIC Programmer, you
probably want to know more about BASIC.

This chapter deals with the mathematical concepts of in-
equalities and conditional statements called IF...THEN and ON...
GO TO and GOSUB...RETURN.

In addition, a method for putting in large amounts of infor-
mation either numbers or strings, is explained by the use of
READ...DATA.

INEQUALITIES

In the BASIC language, as in mathematics, we have a great deal

of use for inequalities. Shown below are the inequalities used in

BASIC:

A<B means A is less than B

A>B means A is more than B

A=B means A has the value of B

A<>B means A does not have the value of B

or

A><B

A<=B means A is less than or has the value of B

or

A=<B

A>=B means A is more than or has the value of B

or

A=>B

IF...THEN

The IF...THEN statement is a method for making a decision or
branching. In English, it is called a conditional statement "if
something happens, then something will be sure to follow."

Some examples using IF...THEN statements are shown below:
(The number after THEN refers to a line number in the program)

NEW RAIN
READY

10 PRINT "IS IT RAINING OUTSIDE";
20 INPUT A$
30 IF A$="YES" THEN 100
40 IF A$="NO" THEN 200
50 GO TO 10
100 PRINT "READ A BOOK OR PLAY CHECKERS."
110 STOP
200 PRINT "PLAY BALL!!! GOOD WEATHER."
999 END
RUN

The program asks the question IS IT RAINING OUTSIDE?

If you answer YES, then you are sent to line 100 which gives
indoor activities to do. If you answer NO, then you are told to
play ball because of good weather. If you type in some other word
like 'DON'T KNOW' neither the IF on line 30 or line 40 is done
(executed) and you drop through to line 50 which sends you back
to line 10 and asks the question all over again. The stop is
placed on line 110 so that you won't print the statement on line
200. There is no stop on any line after 200 since the next line
is END.

RAIN 08/12/69 11:38

IS IT RAINING OUTSIDE? YES
READ A BOOK OR PLAY CHECKERS.

TIME: 0.076 SEC.
READY

RUN

RAIN 08/12/69 11:38

IS IT RAINING OUTSIDE? NO
PLAY BALI!!! GOOD WEATHER.

TIME: q.078 SEC.
READY

43 -

49

IF...THEN (Continued)

Another sample is given below:

NEW TEMP
READY

10 PRINT "WHAT IS THE TEMPERATURE OUTSIDE";
20 INPUT A
30 IF A<32 THEN 300
40 IF A32 THEN 200
50 IF A>32 THEN 100
100 PRINT "THE TEMPERATURE IS NOT YET FREEZING, GET YOUR ANTIFREEZE NOW."
101 STOP
200 PRINT "IT'S FREEZING NOW, ALMOST TOO LATE FOR ANTIFREEZE."
201 STOP
300 PRINT "IF YOU DIDN'T GET ANTIFREEZE YOUR CAR IS ZAPPED!!!!"
999 END
RUN

This program shows the use of inequalities on line 30, 40 and
50. We really didn't need line 50 since no other case could
exist if line 30 or line 40 weren't done (executed). The THEN
statements were so constructed that if line 50 wasn't there, the
program would still work for temperature above 32 since it would
print the correct statement when it reached line 100, and then
stop.

TEMP 08/12/69 11:42

WHAT IS THE TEMPERATURE OUTSIDE? 25
IF YOU DIDN'T GET ANTIFREEZE YOUR CAR IS ZAPPED!!!!

TIME: 0.092 SEC.
READY

RUN

TEMP 08/12/69 11:42

WHAT IS THE TEMPERATURE OUTSIDE? 32
IT'S FREEZING NOW, ALMOST TOO LATE FOR ANTIFREEZE.

TIME: 0.094 SEC.
READY

RUN

TEMP 08/12/69 11:43

WHAT IS THE TEMPERATURE OUTSIDE? 101
THE TEMPERATURE IS NOT YET FREEZING, GET YOUR ANTIFREEZE NOW.

TIME: 0.098 SEC.
READY

- 44

ON...GO TO

Is similiar to the IF...THEN statement, but allows a many branched
switch.

ON X GOTO 100,200,300,350 means:

If X = 1 GOTO 100

If X = 2 GOTO 200

If X = 3 GOTO 300

If X = 4 GOTO 350

The X may be a complicated formula

- 45

si 1

GOSUB and RETURN

As you become more experiont:ted in BASIC your programs will
probably become longer and more complicated.

Often you may have to do a certain routine a number of times.
Suppose you would have to compute a complicated set of instructions
a number of times in the same program. Instead of retyping out the
set of instructions, you could place them at a suitable location,
say line 850, and refer to them whenever you needed this set of
procedures. This is accomplished by using the GOSUB and RETURN.

15 GOSUB 850 sends your program to line 850 and does the
routine,in this case 2 lines,and then returns your program one line
later when the word RETURN at the end of the routine is reached.

14 FOR X=1 to 10
15 GOSUB 850
16 NEXT X

840 STOP
850 LET A = (3.14) * (R,2)
860 PRINT A, R, R 2
870 RETURN

Often you prepare a program, but do not know the exact
information you are working with. This information is called
DATA. It could be sales of teckets to the school basketball
game, or election results or test grades. Anything that can
be represented as either a number or word can be considered
DATA.

DATA can be placed anywhere in your program, but is

usually at the beginning or the end. It is suggested that DATA
be placed, depending upon the size of your program, at lines 80
or 800 or 8000, etc.

READ statements use letters (variables) and can also be
placed anywhere in your program. If you do not have enough
DATA, or if you want the program to continue until all of the
DATA is used up, the computer will print OUT OF DATA ON LINE

, and end the program. This is a signal to you.

A program using READ and DATA is given below:

NEW LUNCHRM
READY

10 PRINT "SALES OF MILK AND SODA"
20 PRINT,"SEPT. 1969"
30 PRINT
40 READ A$,A
50 PRINT A$,A
60 GOTO 40
80 DATA MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY
90 DATA 32.40,23,5,76.45,27.40
99 END
RUN

LUNCHRM 08/12/69 11:46

SALES OF MILK AND SODA
SEPT. 1969

MONDAY 32.4
TUESDAY 23
WEDNESDAY 5

THURSDAY 76.45
FRIDAY 27.4
OUT OF DATA IN 40

TIME: 0.122 SEC.
READY

-47-

9/

READ and DATA, RESTORE

dn*, all -1-1,If the program has the ward the DATA can again

DATA and RESTORE* only restores to
$T08 p-4,y resto

pATA.be used from the beginning. res the string

In the program LUNCHRM, tyre statement was not used.
.00 ,,licated, it

is sometimesIf the words or strings are ofRl00-around
necessary to put a pair of quote 4ca010,,trings each particular
piece of data. Examples of comPlY are shown below:

800 DATA "SMITH, MR. JOHN", "smIT011 DIARY"
PLEAsANT AVE."810 DATA "SMITH, DR. & MRS. THOMAS X3.2

CHAPTER FIVE

Congratulations again!!!

We are certainly pleased that you have come this far in
BASIC.

This chapter will discuss in greater detail exponents
that are fractions (or decimals), something called functions
and procedure of making your own functions.

Some special commands not given before will be des-
cribed, plus the REMark statement. A whole group of things
called the EDIT package will be explained, and of course,
more math.

J = J +l,etc.

In arithmetic or algebra the statement J equals J + 1 is
impossible! but in BASIC the equals sign does not have exactly
the same meaning. Equals in BASIC means whatever is on the left
side of the equals sign takes on the value of the right side.

A program using the idea of J = J 1 is shown below:

NEW COUNTING
READY

10 LET J=J+1
20 PRINT J;
30 IF J= 100 THEN 50
40 GO TO 10
50 "ND
RTTN

COUNTING 08/12/69 11:47

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2'. 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

93 94 95 96 97 98 99 100

TIME: 0.261 SEC.
READY

Line 10 says LET J be replaced by J+1. Since the first time
through the J in Jtl was not assigned a value the computer said to
itself that it was zero. Therefore line 10 LET J=J+1 gave the J
on the left of the equals sign the value of 0+1.

Line 20 prints J or in this case the number 1, close packed
because of the semi-colon(;).

Line 30 is checking statement if J is 100 then the program would
go to line 50 or END. The J was not 100.

Line 40 sends the program to line 10 with J now equal to 1 not
zero as before.

Line,10 says j=j+1 but now the J on the right is a 1, so 1+1
is 2. J on the left now has the value of 2.

Line 20 prints J...in this case the number 2.

Line 30 checks if J is 100! J is 2 not 100.

50

J=J+1 (Continued)

Line 40 sends program back to 10.

Line 10 now says Let J=J+1, but the J on the right side
is a 2. Therefore 2+1 is 3.

Line 20 prints J...in this case the number 3.

Line 30 checks if J is 100. J is 3 not 100.

Line 40 sends program back to 10.

This continues until J = 100 and the check on line 30 sends
the computer to line 50 or END.

MORE ON J=J+1

An excellent use for the idea of (concept) J=J+1 is problem
solving. Below are a number of problems and solutions using the
idea of J=J+1 in BASIC.

PROBLEM 1

The base of an isosceles triangle is 4 feet less than the
sum of the two equal sides. The perimeter of the triangle is
76 feet. Find the length of each side. (X is a whole number.)

NEW
NEW FILE NAME--NEW PBLM1
READY

10 LET X=X+1
20 LET P=X+x+2*X-4
30 IF P=76 THEN 50
40 GO TO 10
50 PRINT X,X,2*X-4
60 END
RUN

NEW 08/12/69 11:49

20 20 36

TIME: 0.064 SEC.
READY

PROBLEM 2

2X-4

The length of a yard exceeds twice its width by 25 feet,
and 950 feet of fencing are needed to enclose it. Find its
dimensions. (ry4 is a whole number.)

NEW PBLM2
READY

10 LET W =W-r1
20 LET L=2*W+25
30 LET P=2*L+2*W
40 IF P=950 THEN 60
50 GO TO 10
60 PRINT W,L,P
70 END
RUN

PBLM2 08/12/69 11:52

150 325 950

TIME: 0.074 SEC.
READY

52

W

L=2W+25

MORE ON J=J+1 (Continued)

PROBLEM 3

John and Otto picked 33 quarts of cherries. The number
picked by John exceeded half the number picked by Otto by 3.
How many did each pick?

NEW PBLM3
READY

10
20
30
40
50
60
70
RUN

LET 0=0+1
LET J=(.5*0)+3
LET N =J +O
IF N=33 THEN 60
GO TO 10
PRINT "JOHN= "J,"OTTO=
END

"0, "TOGETHER= "N

PBLM3 08/12/69 11:54

JOHN= 13

TIME: 0.071 SEC.
READY

OTTO= 20 OGETHER= 33

.7.n exit check should be inserted in programs PBLM1, PBLM2
and PBLM3 in the event that the answer is not a whole number,
a sample exit check for PBLM3 is shown below:

45 IF N ;33 THEN 65
64 STOP
65 PRINT "N>33, ANSWER NOT A WHOLE NUMBER"

Write an exit check for PBLM1 and PB1,112.

RADIAN MEASURE, ANGLES and Tr(Pi)

Of course you are aware that you could measure angles with
something called a protractor.

The BASIC language does not use angles, but does use
something called a radian. Before we discuss this function
further you have been introduced to the symbol Pi (Tr) back
in 6th, 7th, and 8th grades.

Do you remember what Tr stood for?

Sure you do: 7 was almost equal to 3 1/7 or 22/7 or
3.14.

The teletype does not have the symbol Tr on the keyboard
so we are going to have to use a decimal. We use the following
decimal for greater accuracy: 3.14159265

7 = 3.14159265...for some purposes v. need 7
to more decimal places

The area of a circle is 7 -'Ames the radius times the
radius or:

A = TrR2

In BASIC this would be:

LET A = (3,14159265)*Rt2

The circumference of a circle was either:

C = -HD or C = 27R

In BASIC you would write:

LET C = (3.14159265) *D

or

LET C = 2*(3.14159265)*R

-54-

GO

RADIAN MEASURE, ANGLES and r (Continued)

A circle, of course has 360°, so if we start at point 1
and go all around the circle and return to point 1, we have
then made a complete tour around the circle.

(:(1

We could say we went 360° or better still 2r. Since 2r
would seem to mean 360° or the circumference of the circle.

From this we could easily form the following table:

2ir = 360°

= 180°

r/2 = 90'

r/4 = 45°

ff/6 = 30°

n/18 = 10°

I'm certain you could figure r/3 is 60° or 4r is 720°.

We now have a new meaning for n.

n = 180L. = 3.14159265 (radian)

By careful calculation we can find that a specific angle
smaller than 60°has the value 1. This is called a radian.

>One radian 57°

58°

57° c (one radian) < 58°

All of the angles in the BASIC language are written in
radian measure. Therefore it is necessary to convert radians
to angles and angles to radians.

T,4,! use the following proportion to do these calculations:

180° = 3.14159265
angle X

.,- have an angle of 90° and want to find its value in
radiaf1J, would do the following:

- 55

RADIAN MEASURE, ANGLES AND n (Continued)

180° 3.14159265
90°

X

or

1800*X = 3.14159265 * 90°

or

X = 3.14159265 X 90°
180°

A BASIC program that does this (FOR 57.296°) is

NEW X
READY

10 PRINT "WHAT ANGLE DO YOU WISH CONVERTED (LEAVE OFF DEGREE MARKS)"
20 INPUT A
30 LET X=(3.14159(265) *A/180
40 PRINT X
50 END
RUN

X 08/12/69 17:05

WHAT ANGLE DO YOU WISH CONVERTED (LEAVE OFF DEGREE MARKS)
? 57.296
1.

TIME: 0.079 SEC.
READY

We could make the answer a little fancier by replacing line
40 with:

40 PRINT A" DEGREES = "X" RADIANS."
RUN

X 08/12/69 17:09

WHAT ANGLE DO YOU WISH CONVERTED (LEAVE OFF DEGREE MARKS)
? 57 296
57.296 degrees 7.- 1. RADIANS

TIME: 0.092 SEC.
HEADY

56 -

SINE, COSINE and TANGENT

In 9th year math or algebra we use functions called Sine,
Cosine and Tangent. We must know how to convert angles to
radians to use the computer in these problems.

SIN (X)

COS (X)

TAN (X)

The sine of 45° is written:

All refer to X as radian
measure.

Sine Tr() or Sine
(

3.14159265
)

or Sine (.785381625)
4 4

You can construct your own Sine, Cosine and Tangent tables
using the following program:

NEW SOHCAHTOA
READY

SOHCAHTO 08/12/69 17:13

5 PRINT "ANGLE","RADIAN,"SINE,"COSINE","TANGENT"
10 FOR A=0 TO 90 STEP 10
20 LET X=(3.14159265)*A/180
30 PRINT A,X,SIN(X),COS(X),TAN(X)
40 NEXT A
99 END
READY

RUN

SOHCAHTO 08/12/69 17:13

ANGLE RADIAN SINE COSINE TANGENT
0 0 0 1 0

10 0.174533 0.173648 0.984808 0.176327
20 0.349066 0.34202 0.939693 0.36397
30 0.523599 0.5 0.866025 0.57735
40 0.698132 0.642788 0.766044 0.8391
50 0.872665 0.766044 0.642788 1.19175
60 1.0472 0.866025 0.5 1.73205
70 1.22173 0.939693 0.34202 2.74748
80 1.39626 0.984808 0.173648 5.67128
90 1.5708 1. 1.58933 E-8 6.29198 E+7

TIME: 0.360 SEC.
READY

57

63

REMARK also (APOSTROPHE ')

The REMark or REM statement
of the program. It appears only
programmer.

has no effect upon the running
on a listing as an aid to the

On long or complicated programs, the REM statement is used
to explain to the programmer what is happening.

An apostrophe (') does
and is quicker to type.

the same thing as a REM statement

An incomplete program using the

10 LET X=(A*3.14)/180
20 REM
30 FOR A =1 to 90
40 PRINT A, SIN(X)

ETC.

REM and (') is shown below:

' CONVERTS DEGREES TO RADIANS
PRINTS OUT A TABLE OF SINES

' START OF LOOP IN A
' OUTPUT A, SIN(X)

(Special Note: REM's can only be used immediately after a line
number. In all other places, use the apostrophe (').)

FUNCTIONS

The BASIC language provides many other useful tools called
functions. As you learn more Mathematics it will become easier
for you to understand the use of these functions.

(The definitions below are not strictly defined nor listed
completely-see full edition of BASIC Manual for a complete
description.)

FUNCTIONS

SIN (X)
COS (X)
TAN(X)
COT(X)
ATN(X)
EXP (X)
LOG(X)
ABS(X)
SQR(X)

INT(X)

Find the
Find the
Find the
Find the
Find the
Find e
Find the natural logarithm of X (ln x)
Find the absolute value of x;
Find the square root of x (Y5E-or x

1/2
)

INTERPRETATION

sine of X
cosine of X
tangent of X
cotangent of X
arctangent of X

X interpreted as a
number, or as an
angle measured in
radians

Gives the greatest integer not greater than X

INT (1.38)=1
INT (12.99)=12
INT (-2.65)=-3

RND Produces random numbers
SGN(X) Produces 1,0 or -1

SGN (6.25)=1
SGN (0)=0
SGN (-3.15)=-1

NUM Counts the number of numbers after a MAT input
(LET N = NUM)

TIM Gives running time of program in seconds
CLK$ Has the value of the time (16:26:46)
DAT$ Has the value of the date (06/23/69)
USR$ Has the value of the user number
VAL(S$) Converts the string (S$) to a number
LEN (S$) Counts the letters in a string
ASC (CHAR) or
ASC (ASCII abbreviationonverts the letters in ASCII value

- 59 -

6'.3

FUNCTIONS, use of

An example of how to use one of these functions (SQR(X)) is shown
below:

NEW .SQROOT
READY

10 PRINT "THIS PROGRAM PREPARES A TABLE OF NUMBERS,SQUARES AND ";
20 PRINT "SQUARE ROOTS."
30 PRINT "

40 PRINT "NUMBER","SQUARE","SQUARE ROOT"
50 PRINT " It H It

60 PRINT "
ri

70 FOR J=I TO 25
80 PRINT J,J112,SQR(J)
90 NEXT J
99 END
RUN

SQROOT 08/12/69 17:18

THIS PROGRAM PREPARES A TABLE OF NUM. ,SQUARES AND SQUARE ROOTS.

NUMBER SQUARE SQUARE ROOT

1 1 1
2 4 1.41421
3 9 1.73205
4 16 2
5 25 2.23607
6 36 2.44949
7 49 2.64575
8 64 2.82843
9 81 3
10 100 3.16228
11 121 3.31662
12 144 3.4641
13 169 2.60555
14 196 3.74166
15 225 3.87298
16 256 4
17 289 4.12311
18 324 4.24264
19 361 4.3589
20 400 4.47214
21 441 4.58258
22 484 4.69042

60

G 5

FUNCTIONS, Use of (Continued)

23 529 4.79583
24 576 4.89898
25 625 5

ROUNDING OFF (DECIMAL PLACES)

Using the INTeger function we are able to round-off numbers
to the nearest tenth (one decimal place) or nearest hundredth (two
decimal places)or to whatever number of decimal places wanted.

10 LET X= (some number)
20 PRINT INT(10*X+.5)/10t2
30 END

Will round-off a number to two decimal places.

The following program will round-off a number to any number
of decimal places needed:

10 LET X= (some number)
20 LET D= (number of decimal places)
30 PRINT INT(X*10tD+.5)/10tD

61

6

DEF

Often it is necessary for you to create your own functions.
You can do this in each program using a DEFine statement.

Of course as an alternate to this procedu.kre you could
always use a GOSUB and RETURN as previously discussed.

THE DEF STATEMENT is always followed by a space and the
letters FNA or FNB or FNC, etc. All the way to FNZ.

Therefore you can create up to 26 DEF FN'S in your program
for numbers. The two programs below print out a table of sines.

NEW SINETAB1
READY

NEW SINETAB2
READY

10 DEF FNA(X)=(X*3.14159265)/180 10 DEF FNC(Y)=SIN (Y*3.14159265/J
20 DEF FNB(X)=SIN(FNA(X)) 30 PRINT "ANGLE","SINE"
30 PRINT "ANGLE","SINE" 40 FOR Z=0 TO 180 STEP 10
40 FOR X=0 TO 180 STEP 10 50 PRINT Z,FNC(Z)
50 PRINT X,FNB(X) 60 NEXT Z
60 NEXT X 70 END
70 END RUN
RUN

SINETAB1

ANGLE

08/12/69 17:23

SINE

or SINETAB2

ANGLE

08/12/69 17:26

SINE
0 0 0 0

10 0.173648 10 0.173648
20 0.34202 20 0.34202
30 0.5 30 0.5
40 0.642788 40 0.642788
50 0.766044 50 0.766044
60 0.866025 60 0.866025
70 0.939693 70 0.939693
80 0.984808 80 0.984808
90 1. 90 1.
100 0.984808 100 0.984808
110 0.939693 110 0.939693
120 0.866025 120 0.866025
130 0.766044 130 0.766044
140 0.642788 140 0.642788
150 0.5 150 0.5
160 0.34202 160 0.34202
170 0.173648 170 0.173648
180 3.614 E-9 180 3.614 E-9

TIME: 0.277 SEC. TIME: 0.267 SEC.
READY READY

Please consult t;ie regular BASIC Manual for more information about
the use of DEF.

- 62

6'8

ROOTS

The square root of
The square root of
The square root of

25 is 5.
36 is 6.
1 is 1.

We can define the square root as "what number times itself
makes" 81? the answer is 9.

The square root of 100 is 10.

The square root of 50 is ... a decimal larger than 7, but
smaller than 8. Why?

No number times itself exactly equals 50. You can say 5
times 10 is 50, but this isn't a number times itself. Seven
times seven is 49, eight times eight is 64. Then of course the
square root of 50 must be more than seven and less than eight.

What is the square root of 50?

We can use the SQR(X) funct.on to find square root. A
program to do this is given below:

This program finds the square root of 50:

NEW ROOTS
READY

10 PRINT SQR(50)
20 END
RUN

ROOTS 08/12/69 17:27

7.07107

TIME: 0.042 SEC.
READY

We could expand the idea of square root!!!

In qct, we could think of square root as the inverse of the
exponent . Below a table of squares and square roots.

N N2 1-N--or N1 (1/2)
Number Square Square Root

1 1 1

2 4 1.414
9 1.732

16 2

- 63

ROOTS (Continued)

We can easily write a program to prepare this table:

NEW ROOT1
READY

10 PRINT "N","Nt2","Nt(1/2)"
20 PRINT"

It

30 FOR N=1 TO 10
40 PRINT N,Nt2,Nt(1/2)
50 NEXT N
60 END
RUN

ROOT1 08/12/69 17:29

Nt2 NT (1/2)

1 1 1
2 4 1.41421
3 9 1.73205
4 16 2.
5 25 2.23607
6 36 2.44949
7 49 2.64575
8 64 2.82843
9 81 3.

10 100 3.16228

TIME: 0.226 SEC.
READY

Since we defined square root as Nt(1/2) or N raised to the
1/2 power (expornt). We can think of cube root N'` (1/3)

ROOT

CUBE
FOURTH ROOT
FIFTH ROOT

BASIC EXPRESSION INTERPRETATION

Nt (1/2)
Nt (1/3)
Nt (1/4)
Nt (1/5)

64

SQUARE ROOT OF N
CUBE ROOT OF N
FOURTH ROGT OF N
FIFTH ROOT OF N

CUBE ROOT DEFINITION

"What number times itself, three times" makes 8:

N * N * N = 8 The cube root is 2.

"What number times itself, three times" makes 27?

N * N * N = 27 The cube root is 3.

Can you write a simple definition for the 4th root or Nt(1/4)?

Listed below are some other commands that you might find useful:

'LIST (space) (line number)'

allows you to list a part of your program starting a specific
line number. (i.e. LIS 320)

'SYS'

allows you to change the system from the BASIC language.
(i.e. FORTRAN, ALGOL, LAFFF)

'CAT'

allows you to get a list of all of your p/ngram names (or files)
that you have saved.

'RENAME'

allows you to rename a program without destroying

'SCRATCH'

allows you to destroy your current program and let its name remain.

'(RETURN KEY)'

allows you to find out how long your program has been running after
you type RUN.

'OLD DARTCAT***'

You can only LIST this file. LISTs all subjects filed in
Dartmouth College Computer Library. From this you then LIST the
subject to get specific programs.

'(CONTROL SHIFT P)'

Stops your program when nothing else works, also called
break.

'TTY'

Supplies information about your teletype. (i.e. teletype
number, programmer, language, status).

'CATALOG'

May also be called with special option codes these are:

LEN (length)
DLU (date last used)
DLM (date last modified)

ALL (all options)
SEL (starts a request for

66 - specific file names)

CHAPTER SIX

ADVANCED BASIC

This chapter contains information on the more advanced concepts

and ideas in the BASIC language. Details on how to use these concepts

are obtainable by calling the specific inforMation from the computer.

(i.e. EDIT) or by consulting the regular edition of the BASIC manual.

This chapter includes such topics as secret passwords, debugging

programs, the EDIT package, MATRIX and determinants, files, random

numbers and flags.

-67-

7.?

PASSWORDS

Certain user numbers have passwords. Passwords for user numbers
are al,ailable from your tei7.cher.

Programs (or files) can have passwords, too:

(Caution: Since only you know what the password is, and if
you use too many passwords, and forget what password belongs to
what program the programs are lost to you and everybody else.)

Therefore, please use the same password on all your programs.
Most programs don't need passwords at all. To place a password on
your program do the following:

NEW JOE
READY
SAVE JOE,PASSWORD:

The 'password' is assigned to the program JOE.

Your teacher has a special book in which passwords are
recorded for each student. Students may get and use as many pass-
words as necessary.

DEBUGGING

If your program seems to have errors (or bugs), then it needs
correction (debugging.)

First, retype RUN for error messages.

Second, correct error messages. Type LIST.

Third, retype RUN for additional error messages.

Fourth, correct error messages again. Type LIST.

Fifth, continue until no error messages appear on RUN.

Sixth, if program still doesn't work, recheck for missing
PRINT statements and incomplete DATA.

Seventh, ask for help!

Your.teacher has a special TRACE program available

- 69 -

7.3

EDIT

The EDIT (or EDI) functions available are listed below:

EDIT APPEND DELETE DESEQUENCE LIST GMD
EXPLAIN INSERT EXTRACT RESEQUENCE LOCATE LIFE
HELP JOIN MOVE SEQUENCE PAGE JGK

STRING SID

To find out how to use any of these functions type:

EDIT EXPLAIN (name of function)

or

EDI EXP (name of function)

For more information about EDIT in general type:

EDIT EXPLAIN EDIT

(Mathematicians and computer programmers enjoy themselves
and like a little bit of entertainment. Four of the functions
listed above are for this purpose. Can you find them?)

- 70

76

MATRIX and DETERMINANTS

A set of instructions for the use of the many MATRIX
statements are available from your teacher, o: from the regular
BASIC Manual (latest edition.)

If you are interested in finding out about this topic,
please ask your teacher.

FILES

A set of instructions for the use of the many FILE
statements are available from your teacher, or from the
regular BASIC Manual (latest edition.)

If you are interested in finding out more about this
topic, please ask your teacher.

ERROR MESSAGES

See the regular BASIC Manual for an explanation or
description of the many error messages that DTSS.provides.
Listings of the error messages and their explanations are posted
near the teletype.

- 71 -

7;

FLAGS

'Flags' are used by programmers to signal certain changes
in routine. Often the numbers-1 or 0 are used as a flag.

The program below would eventually produce an OUT OF DATA
message when RUN.

NEW FLAG
READY

10 READ A
20 PRINT A;
30 GO TO 10
80 DATA 1,3,4,5,6,7,2,5,6,7
99 END
RUN

FLAG 08/2/69 11:46

1 3 4 5 6 7 2 5 6 7

OUT OF DATA IN 10

TIME: 0.071 SEC.
READY

By inserting the two lines below, the program is given a
FLAG to finish the program without printing the OUT OF DATA
message.

15 IF A=-1 THEN 99
90 DATA -1
LIST

FLAG 08/20/69

'CHECKING FOR FLAG -1
'LAST PIECE OF DATA IS SET TO -1

10 READ A
15 IF A=-1 THEN 99 'CHECKING FOR FLAG -1
20 PRINT AT
30 GO TO 10
80 DATA 1,3,4,5,6,7,2,5,6,7
90 DATA -1 'LAST PIECE OF DATA IS SET TO -1
99 END
READY

RUN

FLAG 08/20/69 11:48

1 3 4 5 6 7 2 5 6 7

TIME: 0.071 SEC.
READY - 72

RND and RANDOMIZE

RND produces a sequence of numbers betTeen .000000 and
.999999 from a table of random numbers. Each time you run
RND the same sequence of numbers will be prepared.

Shown below is a program using RND:

NEW RND
READY

10 PRINT RND,
15 GO TO 10
99 END
RUN

RND 08/20/69 09:53

0.406533 0.927599 0.264283 0.789368 0.976272
0.948228 0.165784 0.328597 0.552183 0.615669
0.912571 0.512762 0.53556 0.825354 0.777282
0.907836 0.884522 9.99165 E-2 0.883958 0.109132
0.742572 0.362751 0.216531 0.858972 0.133681

0.420067 0.786135

STOP

TIME: 0.999 SEC.
READY

RANDOMIZE when used with RND produces a random sequence of
numbers between .000000 and .999999. A different sequence of numbers will
be prepared each time.

Shown below is a program using RANDOMIZE with RND:

NEW RANDOMIZ
READY

5 RANDOMIZE
10 PRINT RND,
15 GO TO 10
99 END
RUN

RANDOMIZ 08/20/69 09:54

0.867272 0.131017 0.246894 0.578099 0.527731
0.659141 0.905874 0.781341 0.856027 0.182354
0.14529 0.126799 0.428908 0.584435 0.935397
0.4312' 0.330366 0.425612 0.618403 0.217188
0.9294q5 0.296386 0.624037 0.735241

STOP
73

RND and RANDOMIZE (Continued)

By using the round-off procedure and INT function a
sequence of numbers to the nearest tenth, hundredth, or
whole number could be produced.

The following program will produce a sequence of
numbers from the random number table between 0 and 99.

NEW RNDINT
READY

10 PRINT INT (RND*100) ;
20 GO TO 10
99 END
RUN

RNDINT 08/20/69 11:33

40 92 26 78 97 94 16 32 55 61 91 51 53 82 77 90 88 9
88 10 74 36 21 85 13 42 78 31

Can you write a program to produce a sequence of numbers
between 0 and 999?

Can you write a program to produce a different sequence of numbers
between 0 and 999 each time?

74

8 0

APPENDIX A

SWIE SUGGESTIONS FOR STUDENT P%0GRAMS

The following is taken from a list of computer programming
ideas in varying degrees of difficulty prepared by Jean H. Danver
under the `ISM'- Dartmouth Secondary chooi ?roject (NSF Grant GW-
2246). :or a full copy of this TOPIC OUTLINE, please contact:

KTFH1T COMPUTATION CENTER
Dartmouth College
Hanover, New Ha,-Tshire 03755

1. `'rite a program that will print out your name.

2. "rite a prc,gram to find the product of two numhers.

3. Writs: a program that will read successive pairs of numbers
and, on each :)ass, -till print the numbers and their sum.

4. proram to read and compute the sum of the first
12 uvrl.

5. T''riJe a progcam compare two numbers. It the first is
larger than the second print, "NOT LESS THAN OR EQUAL".
Othetwise print. "LSS THAL1 OR fl(!UAL TO".

6. Wri.te a pronr,:m to generate and compute the first ten
in eners ar their cuhe.

7. write ,.. find the sun of pairs of numbers.
print out cach number and the sum in appropriate headed
columns.

8. Write a pfocjram to divide any two numbers.

9. Read a list of numbers and print them out in as few
rows as possible.

10. Read at last of numbers and print out every other number.

11. Read a list of numbers anrl, print them out in two co?,i-ns:

12.

a) As cLo together as possible
bl As .1r possible
c) -e in hetween

L 1. fhat wil] genciate the first ten integers,
T;quares and print out in columns headed:

e", "Sum ot Squares'.

13. ;:c.nerate the ti r, 10 integers, compute
- 75 -

8!

SOME SUGGESTIONS FOR STUDENT PROGRAMS (Crntinued)

their square roots, print out the number and its square
root in appropriately labeled columns.

14. Print out the lumbers 1-30 in a) 5 columns, b) 7 columns,
c) like this: 12345 678910

1112131415 1617181920

2122232425 2627282930

15. Add up the squares of odd numbers for 101 to 201.

16. Write a program to find the sum and products of pairs of
numbers. Print out each number, the smaller first in
appropriate headed columns. Arrange the printout so that
the results of the last pair are printed first and the
first pair printed last.

17. Consider the numbers .5 thru 5 in steps of .5 inclusive.
Write a program that will center a three column table on
the paper where the first column contains the numbers,
the second column contains the fifth powers of the numbers,
and the third column contains the fifth roots. Also, have
headings for each column.

18. Write a program that will have the computer center a
three column table on the page. The three columns should
have headings and should contain the entries X, X to the
fourth power, and the fourth root of X, where X takes on
the values .5, 1.5, 2, 4.5, and 5.

19. Write a program to compute absolute value without using
the command.

20. Write a program to round off numbers to the nearest 10,
100, 1000, 1/10, 1/100.

21. Write a program to round off numbers to any place desired.

22. Read any three numbers and print them out in descending
(ascending) order.

23. Determine if one number is divisible by'another.

24. Print out all integers between 1 and 100 which are:

1. Divisible by 3 and 5

2. " 13

3. " 31

Also, find the sums of the numbers in each group.
76 -

SOME SUGGESTIONS FOR STUDENT PROGRAMS (Continued)

25. Compose a program which will find the largest factor of
any number.

26. Determine the common factors of any two given numbers.

27. Write a program to determine the greatest common divisor
(GCD) and lowest common multiple (LCM) of any two numbers.

28. Factor integer using the Method of Fermat.

29. Compute the greatest common divisor (GCD) of 2 given numbers
through the use of the Euclidean Algorithm,

30. List the prime numbers up to a given number, N.

31. List the prime numbers between any two given numbers, N
and M.

32. Express any number as a product of its prime factors.

33. Find the prime factors of a given number.

34. List all primes which are the sum of squares.

35. Program the Sieve of Eratosthenes.

36. Find all the pairs of twin primes between any two numbers.

37. Test numbers for primeness by the use of Wilson's Theorem
...n is prime if the only if (n-1) = -1 mod(n).

38. List N, N! and 1/N in 3 columns.

39. Find the sum of the first N odd numbered even numbers.

40. Locate the largest number in a sequence of numbers and
its position in the sequence.

41. Find the smallest, the largest, and the difference bet-
ween the smallest and the largest of a list of numbers.

42. Order a list of numbers.

43. Construct a table of squares and cubes of the multiples
of 3 from 12 to 42.

44. Write a program to compute NtE where N = any number and
E ,...

any integer without using the operators.

45. Write a program to compute (X*Y)
2 without using the commands

or *.

46. Write a program using the random number generator to
77

d,9

SOME SUGGESTIONS FOR STUDENT PROGRAMS (Continued)

generate 25 random integers between 1 and 100. Then
print out the list -hese integers from the smallest
to the largest.

47. Change fractions t ,-orals.

48. Write a program which will convert linear measures in
.1e metric system (meters and centimeters only) to
quivalent measures in the English system (feet and inches

INT(X) may be useful here.

49. write a program to play the following game: The com-
puter tries to guess a number you have in mind from one
to 100. First, it guesses a number and you tell it if
the number is too high or too low or correct. On the
basis of the information you give, the computer guesses
aaain. This continues until the computer guesses right!

50. Compose a program which will supply the decimal equivalents
to the rational numbers 1/11, 2/11,..., 10/11. On the
first pass through the program the equivalents should be
rounded off to the nearest hundre.4th, on the second pass
to the nearest thousandth, and on the third pass to the
nearest ten-thousandth.

51. Program a general conversion between arbitrary bases.

52. List Pythagorean triplets.

53. List numbers which are the sums of two squares up to
any given number.

54. Write a program to:compute N mod M.

55. Write a program to determine if two numbers are con-
gruent in mod M.

56. Print out modular arithmetic tables.

57. Program an algorithm to convert numbers from decimal
to octal to binary.

58. '.rite a program to do.termine the solutions of a
quadratic equation.

59. Write a program to solve 1st degree equations in one
unknown.

60. Determine the slope of a line given any two points.

61. Find the square root of a number without using the
operator SOP..

78

SOME SUGGESTIONS FOR STUDENT PROGRAMS (Continued)

62. Program Newton's Method for approximating square roots.
This is a guess and then averaging the divisor and quotient
for a new guess.

63. Modify Newton's Method and approximate cube roots.

64. Write a program to calculate the sum of the first N terms
of a geometric progression.

65. Write a program to generate a list of numbers which is
the sum of corresponding elements of two other lists of
equal number of elements.

66. Find the perimeter and area of various geometriC figures.

67. Find the volume of various geometric figures.

68. Write a program to solve percentage c:ord problems.

69. Change integers to Roman Numerals.

70. Read a four digit number. Print out the number and the
number of times the digit 7 appears in the number.

71. Find 3ets of 5 numbers greater than zero which have a
sum of 1000.

72. Given the coordinates of 4 points, determine whether
they form the vertices of a square, a rhombus, a rect-
angle or a quad.

73. ..riven two sets A,B, compute AUJ3 and AQB.

74. Write a program which tells if two sets are equal.

75. Write a program to solve the triangle problem--i.e.,
to find the sum of the perimeters of triangles inscribed
in a 4 inch equilateral triangle if you continuously
counted the mid-points of previous triangles.

ADDITIDN
ANGLES
APPENDIX A
AREA OF A CIRCLE
AREA OF A SQUARE
ARROW
ASC (CHAR)
ASC II
ASKING QUESTIONS (INPUT

STATEMENT)

BACK ARROW

7,

INDEX

4 FILES 71
54 FLAG 72
75 FOR. NEX" LOOP 32
54 FOR NEXT LOOP AND STEP 34, 36
29 FOREWARDPO TEACHERS 0

29 FRACTIONS AND SCIENTIFIC NOTATION 31
59 FUNCTIONS 59, 62
59 FUNCTIONS, Use of 60, 62

26 GOODBYE 16
GO TO 27, 45

7 GOSUB AND RETURN 46
BYE or GOODBYE 16

CAT 66
CATALOG 66
CHANGING THE PROGRAM

YOU ARE WORKING ON
CHAPTER FIVE
CHAPTER FOUR
CHAPTER ONE
CHAPTER SIX
CHAPTER THREE
CHAPTER TWO
CIRCUMHERENCE
CLKS
COMma
COUTROL
CUqTROL
COS
COSINE
COUNTING

SHIFT and
40,19,32,33,35,

HEL 16
HELLO 16

IF... THE!; 43
15 IGNORE 5

49 INDEX 80
4i TNEO,UALIES 42
1 INPUT ST. EMENT 26

67 INT 59
28 II'TEGER.c' 31, 59
17
54 J=J+1,erc 50
59
39 LEN(:)$) 59
66 LET
7 LINE JUMP 1G USING PRINT 20

57, 59 LINE N'T"'BE.;S 6

57, 59 LiNE POINTER
32, 50 TINEA I EqUL'ION°. 33

65 LIS 1), 6:6

LIST 34,E6,16, 69
LOOPS 35,353/1.33,32550, 27

CUBE ROOT DEFINITION

DATA 47,48, 72
DAT$ 59
DEBUGNG 69 MAKING 0DRRErTIONS
DECIMAL'-; 61,73, 31 MATRIX AND "12ETERMINANTS
DEF 62 MORE ON FOR NEYT
DEGREE MARKS 56 mORE ON J=T+,
DETERMINANT: 71 MORE ON PRINT
DIAMETF 54 MULTIPLICATIC'T

%:ULTIFLICATION TJAP,Lz,,S

71
36

5.
.1.t)

35

n 31 N:STED LOOPS 36
EDIT 70 'Z'd 3

END 8 TF7,77 (:.:EE FOR iP;XT)
ERROR ME7'7,a1 71 :;OW YOU"RE READY TO
ERRORS 69 WRITE A PROGRAM IN PASIC 4

EVEN NUWIBTS 35 NT: 59
EXPO1VE'IT(7 29, 3/, F;9 NUP, LINE 34

80

INDFX (Continued)

S.0 ='RACTIONOLD
OLD DARTCAT*** 66
ON... GO TO 45

TAB 39
PARENTHESES 10 TABLE OF VALUES 37
PASSWORDS 68 TAN 57, 59
PERIMETER 52 TANGENT 57, 59
PREFACE 0 THE LET STATEMENT USES
PREPARING A TABLE OF VALUES 37 VARIABLES (or letters) 23
PRINT 9,13,18, 20 THE LINE AND COMMA 40

PRINT-Numbers 13 THE LINE AND TAB 39
PRINT-Calculations 9 THEN... (SEE IF... THEN)
PROBLEMS SOLVING 53 TIM 59
PROPORTION 55 TritE TABLES 35

TRACE 69
QUOTES (" ") 20,18,23,25, 39 TTY 66

QUESTION MARK 26 TURNING ON THE TELETU,E 2

RADIAN MEASURE, ANGLES AND PI 54 UNS 16
READ AND DATA 47 :NSAVE 16
READ AND DATA ,RESTORE 48 UP ARROW 29
REM 58 USER NUMBER 1 59
REMARK also (APOSTROPHE ') 58 usp$ 59
REN 66
RENA,4P 66 vAL(s$) 59
REP 16 'RIABLES 21,22, 23
REPLACE 16
RESTORE 48 vhiAT IS A VARIABLF9 21
RETURN 46
RETURN KEY 66
RND and RANDOMIZE 73, 59
ROOT7 63
ROUNDING OFF (DECIMAL PLACES) 61
RUN 16, 69

S KEY ("TrQP) 15
"AVE' 16

.:OTATION
66

SE4I-COLU:1 18,25,, ,32,33,39, 50
SIGN Yf'arid -) 30, 39
SIN 57, 59 .

6INE,C0:::INE AND TANG:-..N"' 57, 59
SOME ADDITIONAL VARIABLES

f:',::37TIONS FOR STUDENT
22

PROGRAm': 75
STEP 33, .)14

j

STOP 15, 27
STRIUC 5, 48

S'71R 59,
59, 60

81

